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The permutation group theory developed by Longuet-Higgins is applied to the degenerate 
rearrangement of the barbaralyl cation, C9H ~. The analysis allows explicit solution of the kinetic 
equations for one possible rearrangement mechanism and the time evolution of the quantum- 
mechanical states of the system. Permutation symmetry constraints, imposed by the Pauli principle 
applied to interchange of spin-l/2 nuclei, lead to characteristic level splitting patterns, and to the 
exclusion of an intermediate proposed by Hoffmann and others [6, 7]. We discuss implications of 
these constraints for deciding among alternative mechanistic pathways. 
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1. Introduction 

The familiar Pauli exclusion principle, requiring that the total wave function 
be antisymmetric upon interchange of electrons [1], applies as well to systems of 
indistinguishable fermion nuclei. The resulting symmetry constraint has ob- 
servable consequences for the spectra of ortho- and para-H2, NH 3 and similar 
systems [2]. Permutations of the nuclei in such molecules are effected by bodily 
rotation, and thus the permutation symmetry constraints are observed on a time 
scale comparable to the period of rotation. 

We have previously explored several metallorganic and carbonium ion 
systems, in which permutation of identical fermion nuclei is brought about by 
rapid chemical processes rather than bodily rotations [3, 4-]. We have deduced 
compatibility conditions between nuclear spin states and internal motional 
states that lead to distinct low- and high-temperature spin distributions. In the 
present work we apply group-theoretical and topological methods to a rapidly 
rearranging carbonium ion system, the so-called "barbaralyl" cation [5]. We 
will show that symmetry considerations make possible an explicit decoupling of 
the kinetic equations for one rearrangement mechanism, that vibrational- 
rotational levels are split into characteristic patterns by tunneling among 
equivalent potential-energy minima, and that one suggested intermediate is 
ruled out on grounds of symmetry [6, 7]. 

* Alfred P. Sloan Fellow, 1971-1973. 
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Fig. 1. (a) Structures and numbering conventions for barbaralyl isomers and intermediates referred 

to in text. (b) Concerted rearrangement in Mechanism 1 

2. Rearrangement Mechanisms 

The barbaralyl (tricycto[3.3.1.02'S]nona-3,6-dien-9-yl) cation I (see Fig. 1) is 
known to undergo rapid degenerate rearrangement, even at temperatures of 
- 135 ~ C [5]. A single line is observed in the nmr spectrum at this temperature, 
implying the barrier to rearrangement is < 6  kcal/mole [8]. Four proposed 
mechanisms for this rearrangement have been listed by Leone e t  al .  [5], two of 
which may be excluded on the basis of direct chemical and thermodynamic 
evidence. The remaining two mechanisms are 1: 

1) A synchronous, concerted migration of three bonds, reforming barbaralyl 
directly (see Fig. 1 b). 

2) Conversion of I to a (~2v intermediate bicyclo[3.2.2Jnonatrienyl cation (II), 
followed by a 1,2 vinyl shift and/or  rearrangement to a degenerate isomer of I. 

1 Leone et al. [5] number these 4 and 1, respectively. 
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The existence of II as the actual lowest-energy intermediate has been called into 
question recently on the basis of approximate MO calculations [7]. 

Either of these processes may be coupled with a rapid degenerate Cope 
rearrangement (I~I'). 

Because the rearrangement, by whatever process, is degenerate, any of the 
isomers may be obtained formally from any other by a simple permutation of 
the nuclei that leaves the molecular skeleton unchanged. The set of permutations 
describing all isomers encountered in a particular sequence of rearrangements 
forms a group. We therefore apply a group theoretical analysis to the system, and 
look for symmetry-aided insights into the kinetic behavior of the system, as well 
as possible constraints on the fluxional motion. 

3. Group Theory of the Barbaralyl Cation 

Molecules whose potential energy surface contains many equivalent minima 
with low barriers to rearrangement can not be adequately described by the point 
group of any one isomer. The methods of Ruch and Hiisselbarth [9], and 
Klemperer [10] based on double coset enumeration have provided an elegant 
and powerful means of discussion of possible mechanistic pathways in such 
systems. However, since our aim is not to enumerate possible mechanisms, but 
rather to assess possible permutational symmetry constraints involving the 
Pauli principle, we find that the "molecular symmetry group" (MSG) formalism 
defined by Longuet-Higgins 1-11, 12] allows a symmetry analysis of these systems 
more directly suited to the present discussion 2. 

To facilitate discussion of barbaralyl, we name the various degenerate isomers 
as follows: Denote each skeletal position by a number, as in I (Fig. 1). A particular 
isomer is named by listing, in order, the (labeled) atoms occupying those 
positions. Thus the isomer I will be labeled [1 2 3 4 5 6 7 8 9], while, for example, 
the result r of the Cope rearrangement becomes [5 6 7 8 1 2 3 4 91 after the 
molecule is rotated back into coincidence with the reference isomer. In permu- 
tation notation, the process I ~ I '  is denoted (15)(26)(37)(48). It is the labeled 
atoms that are permuted over fixed skeletal positions. 

A single, unrearranged isomer has two symmetry elements: the identity E, 
and a "reflection", denoted by (28)(37)(46)*= ~*, in the notation of Ref. [11]. 
Addition of the "feasible" operation corresponding to the Cope rearrangement 
of I gives (15) (26) (37) (48) = R. 

Mechanism 1 has one other generator, R' =(14)(25)(39)(68), corresponding 
to the concerted rearrangement. Together with the other three elements, it 
generates a group of 12 elements, isomorphic with ~3~. Table 1 lists the elements 
and divides them into classes. 

Mechanism 2 has one new generator: V=(173)(28)(496), the result of a 
1,2-vinyl shift. This new operation, together with the four original ones, may be 

z The "differentiable permutational isomerization reactions" of Klemperer are directly analogous 
to the "feasible permutations" described by Longuet-Higgins, apart from those related to static 
symmetry. However, chemical experience must be used to reduce the number of either to a manage- 
able level: a Klemperer-type analysis of barbaralyl yields a total of 90, 792 differentiable permutational 
isomerization reactions, assuming ~g~ static symmetry, including many chemically unfeasible pairwise 
permutations. In any case, the mechanisms we treat are differentiable by any of the criteria mentioned. 
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Table 1. Molecular symmetry group for barbaralyl cation, generated by Mechanism 1 

Class Element 

E E 
2pz p2 = (128) (379) (465) 

P* = (182)(397) (456) 
3R R =(t5)(26)(37)(48) 

R' = (14) (25) (39) (68) 
R" = (16) (24)(58) (79) 

p3, p3, = (15) (24) (68)* 
2P* P* =(162584)(397)* 

p5, = (148526) (379)* 
3a* a* = (28) (37)(46)* 

a'* = (12)(39)(45)* 
a"* = (18) (56) (79) * 

shown to generate the full permutation-inversion group of nine particles, 
5P9 x (E, E*), with 2 x 9 ! = 725, 760 elements. The same group is obtained whether 
or not one includes the Cope rearrangement as a distinct process. 

The "starred" operations in these groups are not simple permutations of 
nuclei, but are permutations coupled with inversion of all particle coordinates 
through an origin. These operations are important in the description of electronic 
states of the system, but they are of no consequence in the description of nuclear 
motions and spin states for non-chiral systems. Hence the relevant subgroups are 
one with 6 elements, isomorphic with cg3~, and the symmetric group 509, with 
362, 880 elements. 

4. Symmetry Analysis of  Mechanism 1 

Any given isomer may convert to another in one of three ways: by the two 
symmetry equivalent concerted processes R' and R " ,  or by the Cope re- 
arrangement R. (This notation, of course, refers only to the reference isomer. The 
appropriate geometrically equivalent operation is implied for other isomers.) 
Starting with the reference isomer I1 2 3 4 5 6 7 8 9], it is easily shown that the 
following 6 isomers are the only ones generated by this mechanism. For  later �9 
convenience we list them in the following order, and assign each one an index. 

1. [ 1 2 3 4 5 6 7 8 9 ] ,  
2. [4 5 9 1 2 8 7 6 3] generated from 
3. [8 1 9 5 6 4 3 2 7] generated from 
4. [5 6 7 8 1 2 3 4 9] generated from 
5. [2 8 7 6 4 5 9 1 3] generated from 
6. [6 4 3 2 8 1 9 5 7] generated from 

1. b y R ' ,  
1. by p4,  
1. b y R ,  
1. by pz ,  
1. b y R " .  

The graph for the rearrangement process is shown in Fig. 2. Each vertex corre- 
sponds to an isomer, while each edge is a single mechanistic step. A sequence of 
such steps allows interconversion of any two of the six structures. Thus the graph 
is not the complete graph of the MSG, in the usual graph-theoretical sense, but 
rather the graph of "feasible direct tunneling processes", as defined by 
Dalton [12]. 
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Fig. 2. Graph for Mechanism 1. Solid lines connect isomers interconnected by a single process. The 
lines across the diagonal correspond to the Cope rearrangement, while those on the perimeter refer 

to the concerted process 

5. S o l u t i o n  o f  K i n e t i c  E q u a t i o n s  

The rate law expressing the time evolution of the concentration of the ith 
isomer may be written 

dCi 
dt - a(Cj + Ck) + b C t - ( 2 a  + b) Ci, (1) 

where a and b are the rate constants for the concerted and Cope processes, 
respectively, and j, k, and ~ index isomers adjacent to i on the graph. In matr ix  
form [13], this becomes 

dC 
dt - [A +B-kE_]  C.  (2) 

Here C is a six-dimension column vector containing the concentrations of the 
six isomers, E is the 6 x 6 unit matrix, A and B are 6 x 6 matrices, and k = 2a + b. 
A and B are found by noting, for each isomer, the three adjacent vertices on the 
graph, and placing the appropriate rate constants in the corresponding matrix 
elements. The result is given in Eq. (3). 

 ba 

a a b 

A + B -- a a b (3) 
" a a 

b a a 

b a 

The matrix sum A + B is invariant under the group of the graph shown in 
Fig. 2, as verified by direct generation of all 6! possible permutations of the 
vertices, in matrix form, and testing for the solution of the equation 
P - l ( d  +_B)P=_A +B.  This group, of order 12, is isomorphic with the MSG, 
but since no rearrangement process interconverts "starred' and "unstarred" 
isomers, it is appropriate to classify the eigenvectors with respect to the subgroup 
"cg3~", shown in Table 2. 

Using the methods of Brocas [13] we find that chemical "normal modes" 
which satisfy uncoupled first-order rate equations evolve with rate constants 
2~=0, - 3 a ,  - 3 a ,  - a - 2 b ,  - a - 2 b ,  - 4 a - 2 b ,  all non-positive. The value 
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Table 2. Characters and species labels for "~'3." 

"~g3~" E 2P 2 3R 

A 1 1 1 l 
A 2 1 I --  1 

E 2 - I  0 

2 i = 0 corresponds to conservation of mass: the sum of all the concentrations 
does not change with time. The normal modes may be classed in "g~3~" as A1, 
E (twice), and A2. All but the totally symmetric normal mode undergo first-order 
decay, each mode with its own characteristic relaxation time. The observed 
concentration changes may be inferred from the normal modes, as Brocas points 
out. All the changes depend on only two parameters, a and b, the rest being 
determined by symmetry. 

6. Quantum-Mechanical Stationary States for the Rearrangement Process 

Any symmetry constraints on the fluxional system must arise from the 
behavior of the quantum-mechanical stationary states of the system. In this 
section we show the formal relation between these states and the macroscopic 
"kinetic normal modes". 

Let Zu represent the wave function of isomer #. A rearrangement will then 
correspond to changing the description of the system to (say) ;~,. Since the energy 
surface for the system has a number of equivalent minima separated by low 
energy barriers, none of the distinct functions Z describes any of the stationary 
states of the system. A particular isomer is described by a superposition of 
stationary states ~k: 

(4) 
k 

Conversely, a stationary state will be a linear combination of wave functions for 
the separate isomers: 

# 

The matrix b is assumed to be unitary. 
The fluxional system, viewed as a whole, changes with time; its quantum- 

mechanical description will be 

~p(t) = Z z~a,(t) = ~ ~k dk(t). (6) 
v k 

The coefficients a,(t) determine the relative amount of each isomer as a function 
of time; the macroscopic concentration, Cu(t), of the #th isomer is given by 

C~(t) = ~#a*(t) au(t) , (7) 
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where X is the total concentration of all species. (The assumption of a single 
accessible quantum-mechanical state for each isolated species is implicit here. 
At low temperatures, this will hold approximately. Extension of the argument 
to a sum over populated levels is straightforward.) Comparison of Eqs. (4) and 
(6) shows that a and d are related by a = b + d. 

The functions (Ok are assumed to satisfy the time-dependent Schr6dinger 
equation 

ih ~ = ~fO(ok = Ek(ok" (8) 

The time-dependence of the (ok consists of a phase factor: (og=fk exp(--iookt), 
where co k = Ek/h, and fk is independent of time. 

The fluxional system description ~p(t) also satisfies the time-dependent 
Schr6dinger equation 

ih O~p(t) 
a t  - [~0 + aC'(t)] w(t), (9) 

where we have allowed the inclusion of a time-dependent perturbation to permit 
transitions between stationary states, acf'(t) must have a Fourier component of 
frequency comparable with the energy separation between nearby stationary 
states. In these systems this separation will be small and ~ '  will be weakly time- 
dependent. Substitution of Eq. (6) yields: 

ih ~ dk(t) (Ok = Y, dk(t) * ' ( t )  (ok" (lO) 
k k 

Multiplication by (O* and integration over space and time (from t' = 0 to t) gives: 

t 

dE(t) -- dE(O) = (ih) -1 Z I dk(t') ((oLlgff'(t')J(ok5 dt'. (11) 
k 0 

Th~ initial, condition is that the system consist of one particular isomer, i.e, that 
~p(O)~ Za, say,. and therefore d,(O)=b.k~, at1 k. Tile time evolution m terms of 
particular isomers is obtained fr~ta Eqsl (4)~ (6),.gnd (t t): 

t 

a~(t)-a~(O) = (ih)- ~ ~ * t 1 b,LbL,b~kbk~ ~ a~(t') (z~l~f~'(t')lZz) dr'. (12) 
kL a v 2  0 

If the system is in state kt = 0, the 1.h.s. will be zero at first, but will become 
negative a s  contributions from other isomers a grow in. For short times, the 
coefficients a~(t') will be negligible except for isomers adjacent to # on the graph. 
If # = 0 initially, the 1.h.s. will grow with time, and the only appreciable term on 
the r.h.s, will be that with a = 0. An iterative solution of Eq. (12) leads to a series 
expansion whose second and higher terms correspond to "transitions" between 
isomers two, three, etc., steps removed along the graph. 

The interaction matrix elements (Zu[~f'(t')[Z,) may be plausibly assumed to 
vary only slowly with time, since the Z, are time-independent, and W'  is 
dominated by low-frequency Fourier components. The time dependence of au(t) 
is then approximated by a polynomial in t. The nature of this expansion may be 
deduced from the macroscopic kinetic equations: the concentrations Cu(t ) are 
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Fig. 3. Splitting patterns for eigenvalues from Mechanism 1. Case (i): a ~-b; case (ii): a ,> b; case (iii): 
a ~ b. Eigenvalues are equally weighted about the center 

expressible as a linear combination of exponential factors [13]; Eq. (7) implies 
the same behavior for the product a*(t)a,(t). 

The initial conditions imply that a number of excited stationary states must 
be populated in order to localize the system in a particular isomer. We assume 
that the decay from an excited state occurs exponentially, with some characteristic 
relaxation time; thus dk(t ) = dk(O ) exp(--t/Zk). From the relation between a and d 
we see that the r.h.s, of Eq. (7) is again expressible as a sum of exponential terms 
with different relaxation times, in consonance with the macroscopic behavior. 

According to Eqs. (5) and (8), the variational solution for the ~k leads to 
matrix elements <Zul~o[Z~>. Using a Htickel-type approximation, we neglect 
all integrals connecting "non-adjacent" isomers. The remaining ones will be of 
two types: (xulYoIX~)=a for the concerted process, and b for the Cope re- 
arrangement. The secular matrix then has a form identical with the matrix sum 
A +_B from the kinetic equations. We thus expect eigenvectors belonging to 
At, A2, and E (twice). It is worth noting that, because of the form of the matrix in 
this case, the same invariance properties are obtained whether or not non- 
neighbor interactions are included. (In general, however, Hiickel-type matrices 
may display higher symmetry than that implied by the quantum-mechanical 
Hamiltonian [14].) 

Analogously to the potential energies of internal rotation or ammonia 
inversion, we are able to define local vibrational states in each of the several 
minima, split by the mixing of corresponding states of other minima. The 
splitting and thus the stationary states of the system can be described 
schematically by the eigenvalues and eigenvectors of the matrix (Z,J~olZ~). The 
eigenvalues are determined by (1) the magnitude of parameters a and b, and (2) 
the symmetry of the Y f0 matrix. Eigenvalues of the matrix for the "cg3~" 
mechanism are sketched in Fig. 3, for cases where a >> b, a ~ b, and a ~ b. The 
splitting is small relative to the vibrational spacing. Using the methods o f  
Stejskal and Gutowsky [15], we estimate the splitting to be on the order of 
10- 3 cm- 1 for the ground state for motion in a local minimum and 10-1 cm- 1 
for the first excited state in the local minimum. States within a band will be 
populated according to a Boltzmann distribution, implying that all components 
of a degenerate level are equally populated. Note that the kinetic asymptotic 
state, equal population of each isomer, does not necessarily imply that only the 
totally symmetric (A1) microscopic state is occupied; equal population of each 
component of a degenerate level also produces uniform isomer population. 
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Table 3. Characters of the representations spanned by spin functions 

"cg3~" E 2P z 3R 

(9, 0) 1 1 1 
(8, 1) 9 0 1 
(7, 2) 36 0 4 
(6, 3) 84 3 4 
(5, 4) 126 0 6 

7. Nuclear Spin States and the Pauli Principle 

The barbaralyl cation has the molecular formula (CH)~-, and thus consists 
of nine spin-�89 (CH) fermion pseudoparticles. On a time scale long enough to 
allow many rearrangements but comparable to the time scale of an nmr experi- 
ment, say, the Pauli Principle governs the overall behavior of the wave function: 
that is, the wave function must be antisymmetric with respect to interchange of 
any pair of CH fragments. The total wave function for the system is written as a 
product of terms: 

lPtotal ~- l~motionlJ)nuclear spin �9 

The "motional" part is composed of vibronic, rotational, and fluxional co- 
ordinates, which may be strongly coupled in a rapid rearrangement process. 
Examination of the character table shows that lPtotal must have A1 symmetry to 
obey the Pauli principle, i.e., that/"motion X/"spin = A1. 

The 29 = 512 nuclear spin functions are classified by partitions (n~, na), giving 
the respective number of e and/~ spins. For those sets with n~ > na, we have 1 
function in (9,0), 9 in (8,1), 36 in (7,2), 84 in (6,3), and 126 in (5,4). Spin functions 
that are simple products of ~ and /~ spins transform in a simple way under 
permutations. The characters of the representation of "cg3~" generated by each 
partition are just the number of product functions left unchanged by the 
permutation. The characters are given in Table 3. When spin multiplicities are 
taken into account, the 512 spin functions are seen to span the following states: 
dectet A 1 ; octet A 1 + A z + 3E; sextet 6A1 + 3 A  2 + 9E; quartet 9A 1 + 9A 2 + 15E; 
and doublet 7A 1 + 5 A  2 + 15E. 

The Pauli restriction produces the following statistical weights for the 
motional (rotational-fluxional) states: A1:104, A2:72 , E:168. When a given 
isomer is formed, by solvolysis for example, the system is not in a stationary state, 
nor is the nuclear spin state well defined. After long times, when a stationary 
state is established, one would obtain the symmetry-dictated statistical weights. 
The selection rule for electric dipole transitions is/"i,--~/"i (F is totally symmetric 
in permutation groups). By assuming intensities proportional to the statistical 
weights of the levels, we calculate spectroscopic splitting patterns for the low- 
frequency vibrational transitions within a potential well. These are shown for 
various line widths in Fig. 4. If any resolution of the broad line is possible, the 
theoretical patterns allow one to decide on the relative magnitudes of the 
parameters a and b. 
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Fig. 4a -c .  Calculated spectra for transit ions between level patterns for the cases shown in Fig. 3. 
Upper-state values for a and b are 10 times the lower state values in each case. (i) a = b ;  (ii) a =  10b; 

(iii) b = 10a 

Finally, we note that if the kinetic or quantum-mechanical parameters a 
and b are in fact the same, the matrix of Eq. (3) remains invariant under the full 
group of the graph. This group has 72 elements, and is isomorphic with the nmr 
symmetry group of ethane, whose character table is given by Woodman [16]. 
The "accidentally" fourfold degenerate tunneling levels [cf. Case (i) of Fig. 3] are 
seen to derive from the occurrence of a fourfold degenerate symmetry species of 
this group among the eigenvectors of the isomerization Hamiltonian matrix. 
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8. Analysis of a Proposed Intermediate 

Hoffmann et al. [-6], using Walsh orbital arguments, and Yoneda et al. [-7] 
on the basis of CNDO calculations, have independently proposed a ~3~ 
structure III as the mediator of both the Cope process and the concerted 
migration of Mechanism 1. A symmetry analysis of this proposal is possible, 
using the methods developed above. 

Once the structure III is attained during traversal of the reaction coordinate, 
after a stationary state is formed, the symmetry of the potential surface implied 
by this structure assures that any of six collapse pathways are equally probable, 
each one leading to one of the six degenerate barbaralyl isomers discussed above. 
Then there exists a feasible direct tunneling process connecting each isomer with 
each of the others. The graph of the system of isomers is then the complete graph 
of six vertices, as shown in Fig. 5, and the interaction Hamiltonian matrix takes 
the form of Eq. (13). 

lli a a a a aa!) 

a a a a a 

H =  a a a . (13) 
a a a 

17/ a a 

a a a a 

This matrix is invariant to any permutation of indices, and the appropriate group 
of the matrix is 5~ the symmetric group on six objects [17]. Here the 6 objects 
are not the CH fermion fragments, but the 6 indistinguishable C9H ~ fermions, 
proposed to be connected via the common intermediate. Just as we may write 
determinantal wave functions for valence bond structures and combine configu- 
rations to produce a symmetry-correct state function, so we may write a wave 
function for the collection of isomers as a combination of functions typical of 
each isomer [cf. Eq. (5)]. If the nuclear spin state of each isomer is well defined, 
then the system wave function must be antisymmetric with respect to every 
feasible exchange of isomers, i.e., must belong to [16]. The individual isomers 
may have a total nuclear spin of 1/2, 3/2 .... ,9/2, and the total nuclear spin must 
be unchanged upon passage of a system from isomer to isomer, just as the total 
electronic spin must be the same in each valence bond electronic structure. 
Therefore the spin part of the total wave function is totally symmetric with respect 
to permutation of isomer labels; F~pi, = [6]. Equation (13) has the form of the 
secular equation describing the mixing of the isomer functions, and the eigen- 
vectors have the symmetry of the motional states. There are two eigenvalues, 
+5a,  nondegenerate and spanning [6], and - a ,  fivefold degenerate and 
spanning [5 1]. The Pauli condition is: Ftota I = Emotion X Fns  = [ 1 6 ] .  This condition 
is not fulfilled by any combination of spin and motional states. Therefore the 
~3~ structure is rigorously excluded as the transition state in the rearrangement 
process, in that it leads to zero statistical weight for the fluxional state. Of course, 
structure III may still be the preferred structure of barbaralyl cation in solution, 
but the available computations are not able to settle this question definitively. 
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Fig. 5. Complete graph generated by proposed N3~ intermediate 

Finally, it is interesting to note in connection with the @3~ structure that, 
while it is allowed as a transition state by conventional orbital symmetry 
arguments, it is excluded according to McIver's rules [181 for transition-state 
symmetry as well as by our analysis. Some caution is thereby indicated in relying 
only on conventional symmetry arguments, in that more subtle constraints may 
be overlooked. 

9. Mechanism 2: Preliminary Remarks 

The appropriate permutation group for Mechanism 2 is the symmetric group 
on nine particles, 509, with 362, 880 elements [17], regardless of the assumed 
intermediate species [7]. All 9! degenerate isomers would eventually appear, 
with complete statistical equivalence of all protons. Spin states for the system 
span irreducible representations 1~ 8[8 1], 6[7 2], 4[6 3], and 2[5 4]. On a 
time scale in which the Pauli principle applies to the nuclei, the total wave 
function must belong to [19]. In the ground vibronic state, the state corresponding 
to the rearrangement process would have to belong to the representation 
conjugate to that of the spin state. 

The explicit solution of the kinetic equations involves the formation and 
diagonalization of a 9 !x9! matrix, corresponding to the coupled rate Eqs. (14): 

dCi -a(Cj+Ck+Ce+Cm+C,+Cp)+bC~-(6a+b)C,, (14) 
dt 

where here the rate constants a and b refer to the rearrangement through the 
1,2-vinyl shift and the Cope process, respectively. 

The form of these equations implies that a given isomer is "adjacent" to six 
others by means of 1,2-vinyl shifts. We have generated the first 500 isomers 
produced from ! on a computer. The partial graph, shown in Fig. 6, exhibits two 
levels of local structure. Isomers are joined, in groups of four, into tetrahedral 
subgraphs; each isomer belongs to two such tetrahedra, thereby satisfying the 
degree of six. The tetrahedra in turn are joined into six-membered rings, such 
that isomers on opposite sides of the ring are related by the Cope permutation. 
The latter has been excluded as a separate process from Fig. 6. A partial "graph 
of tetrahedra" is shown in Figs. 6b, c. This structure repeats throughout, but the 
graph of course eventually closes on itself. 
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Fig. 6a c. Partial graph for Mechanism 2. (a) Tetrahedral subgraphs formed by locally adjacent 
isomers. (b) Graph  of tetrahedra in (a). Each  point represents a tetrahedron; thus an isomer falls on 
the midpoint  of an edge. (c) Partial graph of tetrahedra, showing all cyclic structures found within 
5 steps from the reference tetrahedron. Opposite edges of shaded six-membered rings represent 

isomers related in the same way as structures I and I' of Fig. I a 

Although explicit solution of Eqs. (14) is impracticable, we are nonetheless 
able to extract considerable information from the properties of 509 . The 9! 
isomers are in one-to-one correspondence with the group elements of 509. The 
elements of any group form a basis for the regular representation (Ref. [ 1 7], p. 1 07) 
of the group. The eigenvectors of the kinetic matrix - and indeed, o f  the micro- 
scopic secular matrix - therefore span all of the irreducible representations of 
the group, each as often as its degeneracy. For 509, the 30 irreducible represen- 
tations and their degeneracies are listed in Table 4. All the relaxation times will 
be determined by specifying the two parameters a and b. Again there will be one 
mode, belonging to [9], with zero relaxation time implying conservation of mass. 
Furthermore, a theorem from the theory of graphs [-19] implies that the 
distribution of eigenvalues is equally weighted about the constant multiplying 
the unit matrix (here 6a + b), and that the maximum deviation from this value is 
the same constant. Hence all the kinetic relaxation times lie between 0 and 
12a+2b.  
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Table 4. Symmetry species and degeneracies for 5~9" 

Representation D e g e n e r a c y  Represen ta t ion  Degeneracy 

[9] b, [19] c 1 [5 3 1], [3 22 12] 162 
[8 qb, [2 17] ~ 8 [5 2=], [33 13] 120 
[7 2] b, [22 15]c 27 [5 2 12], [4 2 13] 189 
[7 lz], [3 16] 28 [4 21], [3 2 2] 84 
[-6 3] u, [2313] c 48 [4 3 2], [32 2 1] 168 
[621],[3214] 105 [4312],[4221] 216 
[6 13], [4 15] 56 [5 14] 70 
[5 4] b, [24 1] c 42 [33] 42 

" D. E. Littlewood, Theory of group characters, 2nd Ed., Clarendon 1950. 
b Representations spanned by nuclear spin states. 
c Motional states compatible with Pauli restriction. 

The same argument applies to the microscopic stationary states. There will 
be a band of states centered on each vibrational level, with eigenvalues 
[2i]__<6a+b. Because of the large number of states, and the probable total 
splitting of the order of a few cm-  i, the band approximates a continuum, with 
bandwidth of the order of 12a + 2b. 

The Pauli compatibility condition is: /'motionXFspin=[-19]. Reference to 
Table 4 shows that only five symmetry types of motional state are accessible: 
[19], [2 17] (8 times), [-22 15] (27 times), [-2 a 1 a] (48 times), and [24 1] (42 times). 
Statistical weights of the motional states are given by g x (2I + 1), where g is the 
number of times that symmetry type appears, and (2I + 1)is the multiplicity of 
the compatible spin state. The total weights for particular symmetries are: 
[,,19]:10, [2 17]:64, [22 15]:162, [23 13]:192, and [24 1]:84. 

I0. Discussion 

One striking result of the symmetry analysis is that the structure imposed 
on the system by the group properties allows a great deal of information to be 
determined by only one or two numerical parameters. Thus, the macroscopic 
kinetic behavior, as well as the microscopic splitting of states, are in principle 
derivable from the results of one or two well-chosen experiments. 

Leone et  al. [5] conclude from experimental evidence that Mechanism 1 is 
the primary (and most rapid) process occurring, with some admixture of 
Mechanism 2. The symmetry analysis allows distinction between the two 
mechanisms provided that line shapes can be sufficiently resolved. It is clear 
that the Pauli condition severely restricts the number of motional states that can 
be occupied in Mechanism 2: out of the original 362, 880 states, there remain 
only 4862 that can be populated, distributed among 126 distinct energy levels. 

Recent experiments [20,21] have indicated the possibility of observing 
effects of "frozen-in" nuclear spin population distribution on tunneling processes, 
through line shape analysis. Experiments such as these hold out the hope of 
observing statistical weight distributions which would make a mechanistic 
choice possible. Willem et  al. [22] have described a multiple resonance method 
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for the determination of the relative probability of alternate rearrangement 
modes. This method can be applied without substantial change to determine the 
relative importance of 5"9 and (g3~ mechanisms, but only if experimental 
conditions can be attained so that the characteristic time for the vinyl shift is 
greater than the transverse relaxation time. Finally, an experimental investigation 
of possible low-frequency transitions associated with motional states would 
provide impetus for a broader inquiry into the role of subtle symmetries in 
elucidating chemical reactions. 
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